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1. Introduction 
Kriging method is a frequently used interpolation methodology in geography, which 
enables estimations of unknown values at certain places with the considerations of 
distances among locations. When it is used in transportation field, network distance is a 
better measurement of distance as traffic follows the network. The original work 
proposed was to use network kriging to estimate seasonal adjustment factors for the 
annual average daily traffic (AADT). The work later on changed the effort slightly. The 
key focus is still the development of the network kirging model, but the application is 
transit ridership in the NYC subway system. Revision on the scope of work is due to the 
following reasons: (1) the estimation of subway ridership is crucial to transportation 
planners, investors, and public agencies, especially for the region; (2) Kriging in subway 
ridership estimation is a reasonable and valuable research attempt, thus contributes to 
the literature; (3) After careful assessment, the PI has found that the available data at 
count stations are insufficient to support reliable estimation of AADT seasonal 
adjustment factor as the count station distribution is too sparse. The work thus develops 
the network Kriging method and demonstrates its application using the transit ridership 
in NYC subway system. 

Reliable transit ridership estimation is important for passengers, transit companies, and 
public agencies. With reliable estimation, passengers can make confident decisions on 
their travel paths, modes, and departure time. Transit companies can assign proper 
capacity, make reasonable service schedules, and operate economically. Public 
agencies can propose cost-effective transportation investments, manage financial and 
labor force, and enhance sustainable city developments. 

Most existing studies estimate transit ridership as part of travel demand modeling using 
four-step methods (Horowitz, 1984) or activity-based models (Hildebrand, 2003). The 
four step method predicts traffic patterns at an aggregate level while activity-based 
models predict individual travel behavior at disaggregate level. Both approaches are 
within the general framework of travel demand modeling, where transit ridership is 
treated as demand of a specific transportation mode. Although behavior consistent, 
estimating transit ridership as part of the overall travel demand has high data 
requirement. An alternative approach is to use regression models to build direct 
connections between ridership and a set of factors whose information can be easily 
obtained. These factors often include local demographic features, economic indexes, 
and geographic information, etc. Regression models present a quick and convenient 
alternative for ridership estimation. Current regression models tend to assume that the 
ridership estimates are independent across stations. However, a lot of the uncontrolled 
factors, such as crime rates in the neighborhood and conditions of sidewalk may 
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influence ridership, causing strong correlation between ridership estimates of nearby 
stations. The correlation weakens as the distance between stations get longer. There 
should be a way to fully recognize and utilize such spatial interdependency pattern 
instead of simply treating the unobservables as white noise.  

In light of the deficiency of current regression models, this study uses a Network Kriging 
model to estimate transit ridership. Kriging models are often used to estimate unknown 
variables using known variables at nearby locations. A standard Kriging estimator is a 
weighted average of known variables where weights are determined by distance. A 
universal Kriging method can further consider the “shift” caused by local conditions. For 
ridership estimation, this means ridership at new stations can be estimated based on 
local factors and current ridership at existing stations. Furthermore, network distance, 
instead of Euclidean distance, is used to determine weights as it reflects the fact that 
subway stations are connected via subway tunnels. This study will estimate the subway 
ridership of a new subway line, the Second Avenue Subway, in New York City using 
Network Kriging model. Features of stations’ geographical locations and network 
connectivity are captured in the model, resulting in more reliable ridership estimates. 

The next section reviews current literature on transit ridership estimation and Kriging 
models. Data is then described and the model specification is discussed. Finally results 
are presented and analyzed, followed by conclusions.  
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2. Literature Review 

2.1 Kriging Models 
Kriging in geo-statistics is synonymous with “optimally predicting” in space, using 
observations with known values at nearby locations (Cressie, 1990). This method has 
been applied in a variety of research fields and derived to many sophisticated formats. 
For instance, Odeh et al. (1995) used a heterotopic cokriging and a regression-Kriging 
to predict soil properties. Goovaerts (2000) presented Kriging models for the spatial 
prediction of rainfall. Lefohn et al. (1987) used Kriging technique to predict seasonal 
mean ozone concentrations for estimating crop losses. There are also literatures 
incorporating Kriging in the transportation field. Briggs et al. (2000) modeled spatial 
patterns of traffic related air pollution, using Kriging method to generate accurate, high-
resolution air pollution maps. Braxmeier et al. (2009) used Kriging methods to forecast 
the traffic on a road network in Berlin, Germany. Wang and Kockelman (2009) applied a 
Kriging model to predict annual average daily traffic using Texas highway count data. 
Given the strong predictive power of Kriging method for forecasting spatially distributed 
data, this study also adopts a Kriging model to forecast transit ridership.  

Standard Kriging inference for spatially distributed variables is based on the relationship 
between distance and variability, which is called a semivariogram in Kriging profession. 
Various theoretical semivariogram have been proposed, and Dale Zimmerman and 
Bridget Zimmerman (1991) did a comprehensive comparison of those functions. Laslett 
(1994) also compared the choice of theoretical semivariogram functions and concluded 
that the precision of prediction is based on the real data. Typical application of Kriging 
relies on Euclidean distance, assuming spatial dependency over the continuous space. 
However, Euclidean distance may not be appropriate for certain occasions. For 
example, Hoef et al. (2006) developed a Kriging model that uses flow volume and 
stream distance in a research for predicting stream flows at unmeasured locations. 
Wang and Kockelman (2009) estimated annual average daily traffic using highway 
network distance measurement. The reason for using non-Euclidean distance is that 
locations are not related in Euclidean space, but through a certain intermedia. For 
example, the transport of smog is blocked by hills and mountains. Animals migrate 
around lakes, mountains, and settlements. The dependence of seasonal adjustments 
occurs over road networks. All these spatial autocorrelation occur over specific areas, 
which can be quite different from the continuous space. In the case of road network, the 
Euclidean distance between sites on two parallel roads could be short, but if the roads 
are not connected, the spatial dependence of these two sites could be minimal. In such 
a case, the “distance” in standard Kriging method needs to be updated with something 
that can indicate the special feature of network structure. As Wang and Kockelman 
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(2009) also indicated, “spatial autocorrelation functions based on network (rather than 
Euclidean) distances” would make the Kriging method more promising. Unfortunately, 
the conversion from Euclidean distance to other distance-related indicators is far from 
trivial: The computational burden can increase dramatically if non-Euclidean distances 
are used and sample size is large. The more challenging issue caused by the use of 
non-Euclidean distance is that the covariance matrix is no longer warranted to be 
positive semi-definite (PSD), which compromises the model validity. 

2.2 Transit Ridership Estimation 
The most commonly used methodologies of transit ridership estimation in practice are 
professional judgments, contracts with similar routes, service elasticities analysis 
(Litman, 2004), four step travel demand models, and econometric and regression 
models (Boyle, 2006). Among them, the first three methods are primarily used for route 
or service changes, while four step travel demand model is commonly used for new 
services. Although four step model has been popular for decades in ridership estimation, 
sometimes it is not a handy method in practice and the resolutions are too gross to 
capture refined built-in environment characteristics near transit stops (Cervero, 2006a). 
Econometric and regression models, on the other hand, are less costly to use (Marshall 
and Grady, 2006) and they can establish the relationship between  a variety of 
influential factors  Many current literatures have exploited regression methods. Standard 
multiple regression models appeared in a large amount of literatures to test various 
influential factors of transit ridership. (Gomez-Ibanez, 1996; Hendrickson, 1986; Kain, 
1997; Kitamura, 1989; Kuby et al., 2004; Taylor et al., 2003; Wang and Skinner, 1984). 
Apart from the operation of transit systems, influential factors include regional 
geography, metropolitan economy, population characteristics, and auto/highway system 
characteristics, etc. (Taylor et al., 2009) Their magnitudes of effect are found different in 
case studies and should be analyzed on a case by case basis.  Moreover, more 
advanced models are used to accommodate the nature of the ridership data generating 
process. For example, discrete outcome models are better techniques when the 
dependent variables are not continuous. Whether or not people choose transit is often 
treated as explained variables, and binary logit models are suitable in such cases 
(Baum-Snow and Kahn, 2000; Syed and Khan, 2000). Koppelman (1983) developed a 
simplified form of multinomial logit model on an application of travel mode shares for a 
set of transit services. Abdel-Aty (2001) used an ordered probit model to explain the 
likelihood of using transit based on a stated preference survey. Cervero (2006b) 
established nested logit models for explaining rail location and commute choices in 
order to promote transit oriented development in California. In addition, Simultaneous 
equations models are able to take fully use of available information and avoid potential 
the exogeneity problem. Transit ridership is always simultaneous correlated with its 
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demand/supply. Studies found such exogeneity problem did exist and simultaneous 
equations models can offer a better model fitting (Peng et al., 1997; Taylor et al., 2009). 
Another frequently used model is the time series model, which can extract ridership 
information from previous data and formulate the trends (Kain and Liu, 1999; Kyte et al., 
1988).  

All the aforementioned studies focus on the effects of controlled factors and time trend, 
while few attempt to reduce estimation errors by considering the spatial dependency of 
transit ridership, which is an important feature underlying the transit system. In the 
general field of transit research, a few studies have considered spatial dependency 
using spatial econometric methods. For example, Goetzke (2008) applied a spatial 
autoregressive logit model to formulate transit use in New York City. Kim and Zhang 
(2005) investigated the interaction between land price and transit use in Seoul using 
spatial autoregressive model, spatial error model, and spatial autocorrelation model. 
These models presume that dependent variables or error terms are correlated among 
observations. By assuming the spatial patterns, models’ explanatory power normally 
increases. Another method with spatial consideration is geographically weighted 
regression (GWR). Chow et al. (2006) developed a geographically weighted regression 
(GWR) to improve the accuracy of ridership estimation using data of Broward County, 
Florida. Cardozo et al. (2012) also used a GWR model in a Madrid metro ridership 
analysis and concluded that GWR model had a better fit. GWR models allow for 
specifications of local spatial effects and capture the geographic heterogeneity of 
influential factors’ effects. However, above mentioned models with spatial 
considerations lack of abilities to forecast values at locations that are new in the system. 
In light of the remarkable forecast ability of Kriging models, this study uses Kriging 
methods to investigate transit ridership, which has not yet studied by considering spatial 
dependency. 
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3. Data Description 
The case study of this research is the proposed Second Avenue Subway line in the 
New York City (NYC) subway system.  

The NYC subway is one of the oldest, most extensive, and busiest rapid rail systems in 
the world with an annual ridership of 1.665 billion in 2012 (MTA, 2012a). Stations are 
located throughout the boroughs of Manhattan, Brooklyn, Queens, and Bronx, and are 
mostly open 24 hours a day (MTA, 2012b). Manhattan, the study area, has a dense 
subway network with 20 lines. As shown in the left map on Figure 1, the service on 
Upper East Side of Manhattan is sparse, which is served only by Lexington avenue 
lines (MTA, 2003). Lexington avenue lines also work as the major transportation 
between Manhattan and Bronx. Moreover, Upper East Side has a high transportation 
demand because it is one of the most affluent neighborhoods in the City with many 
diplomatic missions, museums, hotels, and shopping centers. Currently, people have to 
suffer from the crowed service at stations along the Upper East Side. To relieve the 
traffic burden, the Metropolitan Transportation Authority (MTA) revealed a set of 
construction projects, including the one for the Second Avenue Subway from 125th 
street to Hanover Square (Bennett, 2009). 

As proposed in 2006, the Second Avenue Subway construction consists of four phases 
(MTA, 2013b): the first phase is scheduled to complete and open to public at the end of 
2016 (Donohue, 2013), aiming to split the flows on the most crowded segments of 
Lexington Avenue lines (96th street to 63rd street). Upon the accomplishment of the first 
phase, the current Q trains will be rerouted to serve Upper East Side and be connected 
with the current Broadway lines via existing 63rd Street line. A new designation of T train 
will serve the entire length of second avenue line, sharing tracks and stations with Q 
trains at the Upper East Side (Reeves, 2006). The plan of routes and stations are 
shown in the right side map on figure 1 and the list of new stations is shown in Table 1. 
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Figure 1 Current Manhattan Subway Map and Potential Second Avenue Subway 
Map (MTA, 2013a) 
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Table 1 List of New Stations (MTA, 2013b) 

Station Location Transfers 

125th Street 125th St and Lexington Ave 4 5 6 trains 
M60 bus to LaGuardia Airport 

    
Metro-North Railroad at Harlem - 125th 
Street 

116th Street 116th St and 2 Ave   
106th Street 106th St and 2 Ave   
96th Street 96th St and 2 Ave   
86th Street 86th St and 2 Ave   
72nd Street 72nd St and 2 Ave   
55th Street 55th St and 2 Ave 6 E M trains 
42nd Street 42nd St and 2 Ave 4 5 6 7 S trains 

    
Metro-North Railroad & Long Island Rail 
Road 

34th Street 34th St and 2 Ave   
23rd Street 23rd St and 2 Ave   
14th Street 14th St and 2 Ave L train 
Houston Street Houston St and 2 Ave F train 
Grand Street Grand St and 2 Ave B D trains 

Chatham Square 
Worth St and Chatham 
Square   

Seaport Fulton St and Water St   

Hanover Square 
Water St and Hanover 
Square Pier 11 

 

The goal of this study is to estimate ridership at these proposed stations using easily 
obtainable data and considering the spatial dependency. More specifically, the focus will 
be the forecast of average weekday ridership as stations in Manhattan are much busier 
in weekdays than weekends and holidays. Supporting information mainly comes from 
four sources: ridership at existing stations provided by MTA (2013c), demographic 
information in the surrounding neighborhoods derived from the American Community 
Survey (ACS) (U.S. Census Bureau, 2010a), employment information provided by 
County Business Patterns (CBP) (U.S. Census Bureau, 2010b), and information 
regarding built environment derived from the Primary Land Use Tax Lot Output (PLUTO) 
(NYC Department of Planning, 2010). 

3.1 Ridership Information 
Ridership information on existing lines is collected by MTA via the MetroCard ticket 
system. The average ridership data is provided on MTA’s website (MTA, 2013c). The 
ridership consists of all passengers who enter the subway system, including those 
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transferring from buses, but not those transferring from other subway lines. It should be 
noted that ridership at some stations are counted together as they are internally 
connected to facilitate transfer. In the NYC subway system, there are two pairs of such 
stations. One is the 14th Street - 6 Avenue station and the 14th Street - 7 Avenue station; 
the other is the Time Square-42nd Street station and the Port Authority-42nd Street 
station. In these cases, ridership of individual station is allocated based on the number 
of tracks in each station. Such processing leads to ridership data for 117 individual 
stations in Manhattan.  

3.2 Neighborhood Information 
Ridership at a station can also be influenced by the characteristics of the neighborhood 
surrounding it. Most existing studies define “neighborhood” as the zone within certain 
walkable distance from the station; and 0.25 miles is often used as the industry 
standard (Sallis, 2008). As a result, neighborhoods are delineated by circles around 
stations. However, the Manhattan subway stations are so densely located that these 
circles overlap substantially. In such cases, Thiessen Polygons can be created to 
represent neighborhoods. Thiessen polygons are generated by (1) drawing inerratic 
circles around each station; (2) creating bisector lines by connecting the points where 
circles intersect; and (3) connecting the bisector lines. Essentially, Thiessen Polygon 
avoids neighborhood overlapping by allocating a location to its nearest station. In a 
study of Madrid Metro network, Gutiérrez, Cardozo (2011) created Thiessen Polygons 
to represent neighborhoods around metro stations, and results are satisfactory. This 
study generates Thiessen Polygons based on locations of subway stations and the 
boundary of Manhattan, implying that the entire island is assumed to be served by the 
subway system. Such assumption is justifiable as most of these polygons are within the 
circles of 0.25 mile radius. Some locations (e.g., along the edge) have longer distance 
from the stations, but not exceeding 1 mile. Taking into account the condition of walking 
facilities in Manhattan, such distance is still considered walkable. Figure 2 shows the 
neighborhoods generated with Thiessen Polygon.  
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Figure 2 Thiessen Polygon for Manhattan Subway Stations 

The Thiessen Polygons are then spatially aligned with the ACS data (in census tract 
level), CBP data (at ZIP code level), and the Primary Land Use Tax Lot Output (PLUTO) 
data, generating variables indicating neighborhood characteristics. Table 2 lists their 
descriptions and summary statistics. Variables ln_pop, gender, and ln_inc are derived 
from the ACS. ln_emp is derived from the CBP. retail and storage originate from PLUTO. 
Variables ln_ridership, ln_pop, ln_emp, ln_retail and ln_storage are in the form of 
natural logarithm as they have large values and their distributions are right-skewed. 
Besides, a log transformed model offers convenient interpretation as the estimated 
coefficients can be directly interpreted as elasticity. The variable attract is a binary 
variable, indicating whether the station serves at least one of the most popular 
attractions(Timeout.com, 2013). The variable line indicates the number of subway lines 
serving a station. The variable othermode is an indicator variable, showing the 
connectivity to other modes of transportation.  
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Table 2 Summary Statistics of Variables 

Variables Definitions Mean
Standard 
Deviation 

Min Max

Dependent Variable 

ln_ridership logarithm of average weekday ridership in persons 9.70 0.89 7.58 11.88 

Independent Variables 

ln_pop logarithm of population in persons 8.46 1.16 4.75 10.60 

gender ratio of male to female 0.94 0.19 0.48 2.15 

ln_income logarithm of residents' income in dollar 11.10 0.57 9.14 12.23 

ln_emp logarithm of employment in persons 9.01 1.16 6.27 11.53 

ln_retail logarithm of retail area in square miles 13.43 0.92 11.44 15.23 

ln_storage logarithm of storage area in square miles 11.41 2.36 6.87 15.84 

attract 
indicator variable: 1, if there are top 20 NYC attractions; 
0, if not 0.16 0.37 0 1 

line number of subway lines 2.19 1.61 1 8 

othermode 
indicator variable: 1, if available to transfer to trunk bus, 
intercity bus, train, path, and ferry; 0, if not 0.17 0.38 0 1 

 

The above statistics are derived from variable values for current neighborhoods. When 
interpolating the ridership on the Second Avenue Subway stations, the neighborhoods 
will be re-delineated and the above independent variables will be recalculated.    
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4. Methodology 
This study develops a Network Kriging approach to estimate ridership on newly 
constructed subway stations. At each station, the ridership can be expressed as  

 s s sZ X     (1) 

where  is the ridership at station s. sX  is the vector of  influential factors at station s. 

 is the corresponding estimable vector of parameters. s  is the error term and can be 

further formulated by a semivariogram function  , where  is the network distance 
between any two stations s and ′.   

The commonly used semivariogram functions	  include exponential function, 
spherical function, and Gaussian function. All functions are monotonically increasing 
and have maximal values. Such a trend is consistent with the geo-statistic assumption 
that closer objects tend to have similar performance. Statisticians find that these 
functions provide similar results in practice (Zimmerman et al., 1998). This study 
chooses the exponential function so that 

   0 1 1 exp 0

0

h
c c if h

h a

otherwise


             



 (2) 

where , , and  are parameters to be estimated.  is called the “nugget effect” 
(Geoff, 2005), which reflects discontinuity at the semivariogram’s origin, as caused by 
factors such as sampling error at subway stations.  is the maximum of , called 
the “sill”, indicating the maximum variance in the error terms between a pair of subway 
stations. Thus,  refers to the “partial sill”.  is called the “range”, determining the 
threshold distance between two stations where the variance in the error term stabilizes.  

In order to estimate the Kriging model,  is first regressed on  to obtain the empirical 
value of the error. The empirical semivariogram can be then created and fitted to the 
exponential function in Equation (2), obtaining , , and . Once the theoretical 
semivariogram with the estimated , , and  is derived, it can be used to construct a 
variance-covariance matrix of the error term  in the form of  

 ' 0 1 ' ( )ss ssV c c h    (3) 

With the updated error term, the β is re-estimated using a feasible generalized least 
square (GLS) method. Such a process is iterated until converge.  
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The ridership on the Second Avenue Subway stations can be derived by  

 


1
, ,

T
new new new old old old oldZ X V V    (4) 

where subscripts new and old indicate the newly-constructed stations and existing ones 
respectively. Essentially, ridership at a new station is predicted as the summation of 
local neighborhood influence (captured by the variables characterizing the 
neighborhood) and contribution of unobserved factors (captured by the interpolated 
error term based on estimation residuals at existing stations). The second component in 
Equation (4) can be considered as the main contribution that distinguishes this study 
from previous ones: instead of assuming unobserved factors as white noise and treating 
them as nuisance, they are fully utilized to improve the prediction by considering the 
spatial dependency. The estimation and forecasting processes are coded in MATLAB. 

5. Model Validation 
This section validates the reliability Network Kriging models on ridership estimation. 
Current ridership data on 15 randomly selected stations in current subway network are 
set to be unmeasured. The unmeasured stations are estimated from other ridership 
data by three models, linear regression, Kriging with Euclidean distance, and Network 
Kriging. Then, the estimation accuracy can be indicated by comparing the actual data 
and estimated values. 

Statistics Mean Squared Error (MSE) and Percent Squared Error (%SE) measure the 
difference between the estimated ridership ( ) and the observed ridership .  is 
the number of randomly selected stations where ridership counts need to be estimated.  

 2

est obs
n

Z Z
MSE

n





 

%
obs

MSE
SE

Z



 

The validation results are shown in Table 3. Both measures indicate that Network 
Kriging has better estimation on the unmeasured ridership and linear regression model 
has the largest bias. That is, the Network Kriging model has a little improvement on 
estimation accuracy and should be appropriate for the Second Avenue Subway 
ridership estimation.  
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Table 3 Validation Results of Three Models 

  Linear 
Regression 

Kriging with 
Euclidean Dist 

Network 
Kriging 

Mean Squared 
Error 

12.03 11.99 11.97 

% Square Error 19.94% 19.88% 19.84% 
 

6. Results Analysis 
The Network Kriging method is then applied to the ridership data over the entire 
Manhattan subway network. As shown in Table 4, the values of coefficient estimates 
are close in all models. This is expected as Ordinary Least Square (OLS) and 
Generalized Least Square (GLS) both produce unbiased estimators. Unbiased 
estimators for the same parameter set should be very close to each other. However, the 
t-statistics in both Kriging models are much larger than those in the linear regression. In 
other words, the efficiency of estimation is much better with the Kriging models. The 
Network Kriging method produces estimates with narrower confidence intervals thus 
more reliable forecasting results for the Second Avenue Subway ridership.  
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Table 4 Results of the Three Models 

  
Linear 

Regression 
UK with Euclidean 

Dist 
UK with Network 

Dist 
Variables Coef. t-stat Coef.  t-stat Coef.  t-stat 
ln_pop 0.103 2.22 0.104 7.65 0.103 10.09 
gender 0.263 0.97 0.280 3.51 0.270 4.44 
ln_income 0.252 2.82 0.253 9.53 0.252 12.75 
ln_emp 0.168 2.98 0.172 10.35 0.168 13.47 
ln_retail 0.299 3.66 0.297 12.35 0.299 16.58 
ln_storage -0.054 -2.24 -0.055 -7.74 -0.054 -10.17 
attract 0.315 2.41 0.301 7.71 0.314 10.87 
line 0.240 7.95 0.240 26.78 0.239 35.98 
othermode 0.248 2.12 0.247 7.18 0.249 9.64 
constant 0.258 0.23 0.224 0.68 0.255 1.04 
c0 0.083 5.04 0.047 4.11 
c1 0.003 0.78 0.025 2.31 
a     0.901 42.21 0.899 63.55 

These estimates also provide interesting insights into the subway ridership problem.  

The coefficient of population is 0.103, indicating that population has a positive effect on 
subway ridership. A 1% increase of population in the surrounding neighborhood is 
associated with 0.103% increase of the ridership at the subway station. Male to female 
ratio is estimated to be positively related to ridership: an additional 0.01 of the gender 
ratio is associated with 0.270% more ridership. This estimate implies that men tend to 
generate more subway trips than women do. Wealthier neighborhoods tend to generate 
more subway ridership, as indicated by the positive coefficient of ln_income. Every 1% 
increase in the neighborhood’s average household income is associated with 0.252% 
increase in the ridership. This finding is consistent with most previous studies where 
income is found to be positively related to the travel frequency.  

Many people working in Manhattan rely on subway to commute from Queens, Brooklyn 
and Bronx to their workplaces. As a result, employment contributes significantly to 
subway ridership. Stations serving areas with high employment densities are often 
crowded. It is estimated that a station’s ridership will increase by 0.168% if the number 
of employments in the surrounding neighborhood increases by 1%. Manhattan is also 
well known for its commerce and shops generate large travel demand, as captured by 
the variable ln_retail. It is estimated that ridership at a subway station will be 0.299% 
higher with 1% additional retail area. In contrast, storage areas do not attract 
passengers. Ridership decreases by 0.054% if the storage area increases 1%. 
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Besides local residents and workers, a large portion of NYC subway riders are tourists. 
Tourists visiting New York City often find subway as the most convenient transportation 
mode. Millions of tourists come to the City every year, contributing to the subway 
ridership. Therefore, stations serving scenic spots tend to have higher ridership. The 
coefficient of attract is 0.314, indicating the ridership at these stations are 31.4% higher 
than those not serving any tourism attractions. 

The subway ridership is not only influenced by surrounding neighborhood’s travel 
demand, but also quality of supplies. Some stations more attractive to riders because 
they are served by both local and express subway lines, or both east-west and south-
north lines. In order to reflect the impact of “supply,” the effect of number of lines is 
evaluated. Results suggest that ridership is 23.9% higher when there is one additional 
subway line serving a certain station. 

The NYC subway is also the main connector of NYC’s various transportation terminals. 
In New York City and surroundings, there are three international airports, one national 
train hub, several regional train stations, and multiple inter-city bus terminals. 
Passengers may use the subway system to transfer from one to another, contributing to 
the subway ridership. The estimate of othermode shows that ridership at stations 
serving major transportation terminals are 24.9% higher. 

The parameters in the semivariogram are estimated simultaneously with the coefficients 
of independent variables. The “nugget effect”  is 0.047, which is caused by the 
measurement error or the short scale variability. The “partial sill”  is 0.025, indicating 
the variance does not improve much when the network distance increases. The “sill” 

 is thus 0.072, indicating the maximum variability of regression error terms is low. 
The reason may be that the exogenous independent variables have captured most 
variance. When checking the R-square statistics of the Network Kriging model, more 
than 99% of the variability of ridership is explained by the independent variables. The 
“range” parameter is 0.899, indicating that the variability stabilizes when the network 
distance between two stations is longer than 0.899 miles. In other words, 0.899 miles is 
the threshold to see whether there is an increasing variability. 

The ridership at the Second Avenue Subway stations can thus be interpolated using the 
estimated coefficients. The independent variables of the new stations are calculated by 
new Thiessen Polygons which are delineated based on the planned station locations. 
The before and after ridership are shown in Table 5. Four of the Second Avenue 
Subway stations use the existing stations and the others are new stations. The ridership 
changes at the four stations mainly result from the re-delineation of the covered area. 
Comparison of the results from Network Kriging and those from linear regression shows 
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some differences. For example, the ridership at the 125th station is 39,900 by linear 
regression, but 32,219 by Network Kriging. The lower ridership estimated by Network 
Kriging may be due to the consideration of nearby stations (116th station, 110th station, 
and etc.) which have low ridership as Kriging assumes that the error variability is low for 
close objects.  

Table 5 also lists the before-after ridership on parallel Lexington Avenue stations. 
Without considering induced demand, ridership of most stations decreases. The main 
reason is that the Second Avenue Subway covers part of area that is currently covered 
by Lexington Avenue lines. In other words, the Lexington lines ridership is split to the 
Second Avenue Subway. This is one of the most important targets of constructing the 
Second Avenue Subway. When the new lines are open to public, Lexington Avenue 
lines will not be crowded as it is today and mainly serve as the connection between 
Manhattan and Bronx. 
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Table 5 Ridership on Second Avenue Subway stations and Parallel Lexington stations 

Station on Second 
Avenue Subway  

Current 
Ridership 

Estimated 
Ridership by 

Linear 
Regression 

Estimated 
Ridership by 
Kriging with 
Network Dist 

Parallel Lexington 
Avenue Stations 

Current 
Ridership

Estimated 
Ridership 
by Linear 

Regression

Estimated 
Ridership by 
Kriging with 
Network Dist 

125th Street 27,990 39,900 32,219 125th Street 27,990 39,900 32,219 
116th Street New 13,017 18,283 116th Street 15,655 7,556 8,336 

106th Street New 15,192 13,017 
110th Street 11,630 8,954 10,568 
103th Street 15,210 9,176 10,165 

96th Street New 18,941 16,209 96th Street 24,870 18,904 19,411 
86th Street New 44,338 37,907 86th Street 60,965 60,272 55,880 

72nd Street New 54,776 47,028 
77th Street 35,579 29,498 28,752 
68th Street / Hunter 
College 

34,984 21,244 17,996 

55th Street New 45,748 42,540 
59th Street 63,138 79,255 58,201 
51th Street 62,774 40,862 34,431 

42nd Street New 37,813 37,172 42nd Street / Grand 
Central 

144,350 133,415 93,920 

34th Street New 23,723 21,722 
33rd Street 30,497 23,667 31,357 
28th Street 22,274 12,993 17,327 

23rd Street New 22,241 17,840 23rd Street 30,929 11,227 12,346 

14th Street 6,123 28,441 32,778 
14th Street / Union 
Square 

106,380 120,183 55,407 

Astor Plaza 17,630 15,212 15,020 

Houston Street 17,090 24,328 17,815 
Bleecker Street 34,191 57,492 44,084 
Spring Street 11,132 11,117 8,522 

Grand Street 23,304 15,994 12,690 Canal Street 46,435 98,357 46,770 
Chatham Square New 12,890 13,845 Brooklyn Bridge 36,939 23,423 16,095 
Seaport New 14,294 13,384 Fulton Street 64,287 62,977 33,157 
Hanover Square New 10,600 9,866 Wall Street 22,551 8,063 9,705 
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7. Conclusion 
This study uses a Network Kriging method to estimate ridership at subway stations, 
using the Second Avenue Subway in Manhattan as an example.  

With this Network Kriging model, independent variables capture the deterministic part of 
ridership. The stochastic part is fitted by a semivariogram which is an exponential 
function of distance between two stations. The distance is calculated by the subway 
network distance instead of the Euclidean distance in standard Kriging because network 
distance is a more pattern-consistent index in measuring adjacency in a subway 
network. The fitted semivariogram shows that close stations have less variability and 
distant stations generally have large variability, but the variability keeps constant 
beyond 0.899 miles. The reliability of Network Kriging model is first validated by 
estimating ridership at 15 randomly-selected stations in the current network. Results 
show that Network Kriging improves the estimation accuracy compared to a standard 
linear regression model and a Kriging model with Euclidean distance. The ridership 
along the new Second Avenue Subway and the parallel Lexington Avenue Subway is 
then estimated. Results show that Second Avenue Subway will serve a considerable 
number of passengers and the congestion on Lexington lines will be relieved. However, 
the total fare revenue would not increase much right after the operation of new services. 
Transit companies may need to dispatch fewer trains on the new lines to operate 
economically. Public agencies can give residents and businesses incentives to move 
along the east coast of Manhattan to take fully use the Second Avenue Subway.   

The Network Kriging model developed and applied in this study improves Kriging model 
by using network distance instead of Euclidean distance. The methodology is also 
applicable in other transportation issues that involve measurements of adjacency. 
Besides, the study of spatial dependency on transit ridership highly contributes to public 
transportation research, serving as an important reference for future works on transit-
oriented cities. 
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